

 Navigation

 	
 index

 	ivory-lang latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/ivory-lang/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/ivory-lang/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ivory-lang latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

ivory/user-guide.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

 % Ivory User Guide

Introduction

Ivory is an embedded domain specific language that tries to eliminate certain
classes of bugs from the C programming language.

Language Features

Memory Safety

Ivory removes the possibility for accidental indexing out of array bounds, and
null pointer dereferencing statically. All allocation in Ivory is either
stack-based or global, allowing for initializers to be specified by the
programmer.

C Integration

Ivory makes it easy to work with existing C source. Function symbols and
structures can be imported into an Ivory program, and as code for Ivory is
generated via C, calling Ivory from C is straight forward.

Kinds

There are three kinds in Ivory:

		* (star)

		Proc

		Area

* (valued types)

The * kind represents types that have values, which in ivory includes numeric
types, booleans, characters, pointers, function pointers and references.

Proc (functions)

Functions defined in Ivory have their own kind, Proc. The purpose for this
distinction is to formalize the fact that Ivory does not support higher-order
functions. There is an escape: the ProcPtr type represents a pointer to a
function, allowing it to be invoked through an indirect call. The syntax for
constructing a type of kind Proc is the function arrow:

		'[] :-> () - a function that takes no arguments and returns no value

		'[Uint32] :-> Uint8 - a function that takes one Uint32 and returns a
Uint8 value.

Area (memory areas)

Memory areas, inspired by “Strongly Typed Memory Areas” [1], represent the types
of aggregate structures that take up a region of memory. The supported
aggregate structure types are:

		Stored :: * -> Area - The most simple memory area, representing a single
stored value.

		Struct :: Symbol -> Area - An aggregate structure, named by the type-level
string that is its argument.

		Array :: Nat -> Area -> Area - An array of n areas.

		CArray :: Area -> Area - The same as an Array type, but without the
type-level length parameter. This is suitable for interfacing with a
function implemented in C.

Types that have kind Area are never meant to have their values used directly,
instead they will be manipulated through the use of a Ref or Ptr.

Language

Ivory eff a (statement monad)

All statements in Ivory are performed in the context of the Ivory monad. The
monad has two parameters, eff and a, which represent the effect context of
the enclosing block, and the return type of the statement respectively. For
example, calling a function that produces an IBool value in isolation will
produce something of type Ivory eff IBool, while the statement that returns a
value used with something of the type IBool will have the type
(Returns eff IBool) => Ivory eff (), Returns being the effect that is
tracked in this context..

Return Effects

Allocation Effects

() (void)

There is one special type in Ivory, named (). This corresponds to the void
type in C, in that it’s a valid return type. Where it differs from C is that it
is only valid as a return type; void pointers are not allowed.

IBool

IBool is the type of boolean values in Ivory. For producing values of type
IBool, there are two classes, IvoryEq and IvoryOrd. Additionally, there
are two constants of type IBool, true and false.

IvoryEq

IvoryEq provides two functions for testing equality, (==?) and (/=?).
They mirror the Haskell equality testing functions, though they have a question
mark appended to avoid conflicts.

IvoryOrd

IvoryOrd provides four functions for testing the order of two elements,
(>?), (>=?), (<?) and (<=?). Again, they mirror the members of the
Haskell Ord class, with a question mark appended to avoid conflicts.

Consuming IBool values

There are two ways to consume a value of type IBool, an if-then-else
statement, or a conditional expression. If-then-else is implemented by the
ifte function, which takes three arguments: an expression of type IBool, a
branch for the true case, and a branch for the false case.

ifte :: IBool -> Ivory eff a -> Ivory eff b -> Ivory eff ()

Conditional expressions mirror the ternary conditional operator of C:

(?) :: IBool -> (a,a) -> a

Numeric Types

All Numeric types in Ivory support operations from the Haskell Num class.
Additionally, the floating-point types support the use of the Floating and
Fractional classes. All numeric types support comparison and equality testing
via the use of the IvoryEq and IvoryOrd classes.

Integral Types

IvoryIntegral

This type class provides the div and mod operations.

Uint8, Uint16, Uint32, and Uint64

Ivory provides a set of unsigned integer types, Uint8, Uint16, Uint32, and
Uint64. These types are bindings to the C types uint8_t, uint16_t,
uint32_t and uint64_t respectively. These types also have an instance for
IvoryIntegral.

Sint8, Sint16, Sint32, and Sint64

Ivory provides a set of signed integer types, Sint8, Sint16, Sint32, and
Sint64. These types are bindings to the C types int8_t, int16_t,
int32_t and int64_t respectively. These types also have an instance for
IvoryIntegral.

Floating-point Types

IFloat and IDouble

Ivory provides two types for floating-point numbers, IFloat and IDouble.
These correspond to the float and double types present in C.

Floating-point Conversion

When writing code that works with floating point numbers, it can become
necessary to convert to and from IFloat or IDouble from many of the integral
types. For this purpose, the IvoryFloatCast class exists. It provides two
functions: toFloat for converting from an integral type to a floating-point
type, and fromFloat for converting back, with a default in the case of a
NaN.

Structures

Quasi-quoter

Labels

Externally defined memory areas

Ref area (references)

References in Ivory are pointers that are guaranteed to point to something.
Having one around means that dereferencing and storing can be done without
requiring a check for null.

Ref Allocation

Section needs to be revised

References are allocated in a way that requires them to alway have memory that
backs them. This is currently implemented by only allowing stack allocation.
Stack allocation is performed through the local primitive, which will create a
Ref that points to a zero-initialized chunk of memory. The local primitive
takes no arguments, instead using type inference to figure out what the
allocated structure is from the way that it is used. In this example, local is
able to figure out, through type inference, that a Ref (Stored IBool) is being
allocated.

 do ...
 r <- local
 store r true
 b <- deref r
 ...

As Ivory does not currently guard against returning references allocated with
local from their enclosing context, it’s the programmer that has to guard
against that case.

deref / store

There are only two operations defined for working
with the values that references contain:

		deref :: Ref (Stored a) -> Ivory eff a - read the value out of a reference

		store :: Ref (Stored a) -> a -> Ivory eff () - store a value into a
reference

Notice that these two operations only work on references that point to a
Stored thing, this implies that you can only deref and store things that
are of kind *; working with references that contain things of type Struct or
Array require the user to index down to something that is Stored.

Indexing

As deref and store can only be used with references that point to a thing of
type Stored a, there needs to be ways of turning references to a aggregate
type like a Struct or an Array. To this end, two functions exist:

(~>) :: Ref (Struct struct) -> Label struct area -> Ref area
(!) :: Ref (Array len area) -> Ix rep len -> Ref area

The (~>) operator will turn a reference to a Struct into a reference to one
of its fields, while the (!) operator will index into an array, producing a
reference to one of its elements. Both of these operations are pure, as using
them corresponds calculating a new address safely, from a known address.

The Ix type

The (!) operator takes as the Array index something of type Ix rep len.
This type is described in more detail in [1], however it’s sufficient to say
that it is an index value that lies within the range [0,len). This then
ensures that references that point to an array cannot be indexed out of bounds,
as you can only use an index that is statically known to fall within the range
of its elements.

One difference between our implementation and that of [1] is that we include a
rep parameter to the Ix type, which indicates what the underlying
representation for the index will be. It’s worth noting that this opens the
door to problems in which a representation that is too small is chosen for an
array, however these sorts of problems can be ruled out statically once an
arithmetic solver is integrated into the GHC type system.

Ptr area (pointers)

Pointers in Ivory can not be manipulated directly. Following the treatment in
[1], they represent something that can be thought of as Maybe (Ref area).
Because of this distinction, pointers must first be unwrapped, and then used as
a reference in context. To perform this unwrapping, the withRef operation is
provided.

withRef :: Ptr area -> (Ref area -> Ivory eff t) -> Ivory eff f -> Ivory eff ()

Under the hood, this is implemented as a null-check, using the true continuation
when the pointer is not null, and falling back on the false continuation when it
is.

Functions

Function symbols that are defined at the top level have the type Def proc
where proc is something of kind Proc representing the type signature for the
function. These symbols are suitable for use with the call and call_
functions.

Calling Functions

Functions can be called in two ways: call or call_. Conceptually, they take
something of the type Def proc, then produce a Haskell function that will
consume arguments in the way that the function being called would. They differ
in that call_ will always return (), never naming its result.

As an example, consider the function f defined below, combined with the two
variants of call.

f :: Def ('[Uint32] :-> Uint32)
call f :: Uint32 -> Ivory eff Uint32
call_ f :: Uint32 -> Ivory eff ()

Function Pointers

It is possible to turn a defined function into a function pointer that can be
passed as an argument to other functions. This is done via the procPtr
function:

procPtr :: Def proc -> ProcPtr sig

As the result of a call to procPtr is something of the type ProcPtr, using
it with the call functions will produce a type error. To solve this problem,
there are two variants on the call functions named indirect. They behave
the same way, but can only be used with ProcPtr proc typed symbols.

Function Definition

Functions can be introduced in three ways: importing from a C header, defining
an extern symbol, and providing a function body. Each definition will produce
a top-level value of type Def proc, where proc is the type of the symbol.

When importing a function from a C header, the importProc function is used.
It takes the name of the symbol to be imported, as well as the name of the
header to include as its arguments. Functions imported this way are required to
be given a type signature, which will inform the call functions of the
argument types to that function.

Importing external symbols with the externProc function is similar to
importing a function from a C header, though there is no need to specify a
header path. Again, a signature is required.

Defining functions with a body is done with the proc function. The proc
function takes two arguments, the name for the function in the outputted code,
and a function that describes its behavior. For example, the body of the
function symbol f defined below is typed separately from the definition, to
illustrate the connection between the body definition and the signature. Note
that the return type of the f_body function is specified as the r parameter
to the Ivory monad type, and that the monadic return type is set as ().

f :: Def ('[Uint32] :-> Uint32)
f = proc "f" f_body

f_body :: (eff `Returns` Uint32) => Uint32 -> Ivory eff ()
f_body val = ret val

Returning values

In order to return a value from a function body, either the ret or retVoid
functions must be used. The two functions have the following type:

ret :: (eff `Returns` r) => r -> Ivory eff ()
retVoid :: Ivory () ()

Note that these two functions are the only way to affect the r parameter of
the Ivory monad. The purpose of this is that if multiple uses of ret are
present in a function body, having them fix this r type will cause them to all
have the same type. As an example, consider this fragment, which will cause a
type error:

do ...
 ret true
 ...
 retVoid

Module Definition

Ivory modules are defined separately from the Haskell module system. The
purpose they serve is that of a compilation unit; everything added to an Ivory
module will be included in the resulting C source and header. Modules can also
be imported into the interpreter, loading the described environment into the
current evaluation context. Additionally, to facilitate code reuse, modules
are allowed add dependencies on each other.

Module Definitions

Modules are defined with the package function, which takes a String for the
name of the generated module, and a ModuleM value. ModuleM values are
monadic actions that describe what goes in to a module definition.

Exporting Functions

Functions, whether imported from C or defined in Ivory, are exported with the
incl function. Using incl will do different things in different contexts:

		For an imported function, it will write out an #include directive for the
header that defines the symbol

		For an extern function, it will write out an extern definition in the
generated header

		For a function defined in Ivory, it will write the function prototype in the
header, and the function body in the source

Functions, memory areas and structs can be made private – meaning that their
declarations are only put in the source file, not the header. This is done by
using a private block in the module definiton as shown below. As shown,
one can also explicitly use a public block – but public visibility is the
default.

cmodule ∷ Module
cmodule = package "sample" $ do
 private $ do
 defStruct (Proxy ∷ Proxy "Foo")
 defMemArea privateFoo
 incl privateHelper1
 incl privateHelper2
 public $ do
 defStruct (Proxy ∷ Proxy "Bar")
 incl publicFunction

References

[1] “Strongly Typed Memory Areas”
http://web.cecs.pdx.edu/~mpj/pubs/bytedata.html

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/minus.png

_static/comment-close.png

CODE_OF_CONDUCT.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of
fostering an open and welcoming community, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating
documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free
experience for everyone, regardless of level of experience, gender, gender
identity and expression, sexual orientation, disability, personal appearance,
body size, race, ethnicity, age, religion, or nationality.

Examples of unacceptable behavior by participants include:

		The use of sexualized language or imagery

		Personal attacks

		Trolling or insulting/derogatory comments

		Public or private harassment

		Publishing other’s private information, such as physical or electronic
addresses, without explicit permission

		Other unethical or unprofessional conduct

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

By adopting this Code of Conduct, project maintainers commit themselves to
fairly and consistently applying these principles to every aspect of managing
this project. Project maintainers who do not follow or enforce the Code of
Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting a project maintainer at
smaccm@galois.com.
All complaints will be reviewed and investigated and will result in a response
that is deemed necessary and appropriate to the circumstances. Maintainers are
obligated to maintain confidentiality with regard to the reporter of an
incident.

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org],
version 1.3.0, available at
http://contributor-covenant.org/version/1/3/0/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ivory-backend-acl2/README.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

Ivory Assertion Verification and Compilation to ACL2

Ivory [https://github.com/GaloisInc/ivory] is a C like DSL embedded in Haskell [http://haskell.org]
for hard realtime embedded applications. Galois [http://corp.galois.com/] is currently
using Ivory to build a quadcopter autopilot [http://smaccmpilot.org/] for DARPA [http://www.darpa.mil/]‘s
HACMS [http://www.darpa.mil/Our_Work/I2O/Programs/High-Assurance_Cyber_Military_Systems_(HACMS).aspx] program.

This library provides a means to verify Ivory assertions, and hence optimize them out of the generated code,
and to compile complete Ivory programs into ACL2 for higher levels of formal verification.

Installation

		Install the Haskell Platform [http://www.haskell.org/platform/].

		Install the Ivory DSL:

		Clone the ivory [https://github.com/GaloisInc/ivory] git repo.

		Build and install the ivory sub library:

$ cd <ivory-repo-directory>/ivory && cabal install

		Install Ivory’s ACL2 backend:

		Clone the ivory-backend-acl2 [https://github.com/tomahawkins/ivory-backend-acl2] repo.

		Build and install the ivory-backend-acl2 library:

$ cd <ivory-backend-acl2-directory>/ivory-backend-acl2 && cabal install

		Install ACL2 [http://www.cs.utexas.edu/users/moore/acl2/] and set the ACL2_SOURCES
environment variable to point to the installation location:

$ export ACL2_SOURCES=<path-to-acl2-sources>

Verifying and Optimizing Out Ivory Assertions

The library provides the function Ivory.Opts.Asserts.assertsFold to check
and remove verified assertions in an Ivory program:

assertsFold :: [Module] -> IO [Module]

assertsFold traverses the entire program, analyzing each functions’ assertions and input and output contracts
(requires and ensures).
Interprocedural analysis is handled by using callees’ IO contracts to abstract the function’s body.
Each assertion is translated into an intermediate
verification conditions language [https://github.com/tomahawkins/ivory-backend-acl2/blob/master/src/Ivory/Opts/Asserts/VC.hs]
(VC), which is then translated to ACL2 and checked.
Assertions that prove correct are rewritten as Ivory comments to annotate
the generated code. Assertions that fail remain in place as runtime checks.
During the analysis, prior assertions in a program serve as lemmas for later ones.

Possible Future Extensions

		Modeling a non-empty stack as a starting condition.
		A free initial stack sometimes gave ACL2 trouble, e.g. structTest.

		Analyzing functions for purity and maintaining the stack across pure function calls.

		Loop analysis.

		Use the stack to handle global memory areas.

		Checking all call-sites to optimize out input contracts (requires).

		Targeting other provers (SMT).

Compiling Ivory into ACL2

In addition to verifying assertions, this library provides means to translate Ivory programs to ACL2,
enabling higher level properties (written in ACL2) to be verified against Ivory implementations.

An Example

In this example we will write a factorial function in Ivory, compile it to ACL2,
and then prove termination and other properties of the function.

We are going to create a file (Factorial.hs) to capture the program and run the verification.
First we need some pragmas to allow certain Haskell extensions leveraged by the Ivory language.
We also need to import the Ivory DSL, the Ivory-to-ACL2 compiler, and the ACL2 DSL:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
module Main (main) where

import Ivory.Language
import Ivory.Compile.ACL2
import qualified Mira.ACL2 as A

Next, write a recursive factorial function in Ivory:

factorial :: Def ('[Sint32] :-> Sint32)
factorial = proc "factorial" $ \ n -> body $
 ifte_ (n >? 1)
 (do n' <- call factorial $ n - 1
 ret $ n' * n)
 (do ret n)

Now, package the factorial function into a module:

factorialModule :: Module
factorialModule = package "factorial" $ incl factorial

Next, compile the factorial module to ACL2:

factorialACL2 :: [A.Expr]
factorialACL2 = compile factorialModule

Now that we have the Ivory factorial function in ACL2,
we just need to run it through ACL2 to check termination.
Since ACL2 requires termination of all defined functions,
if A.check returns true, this means ACL2 did not produce any errors
and the function was proven to terminate:

main :: IO ()
main = do
 terminates <- A.check factorialACL2
 putStrLn $ "Termination: " ++ (if terminates then "pass" else "fail")

Finally, run the program to prove (or disprove) termination of the Ivory factorial function:

$ runhaskell -W Factorial.hs

This should result in Termination: pass printed on stdout.

Next, change the function so it doesn’t terminate. This can be accomplished by
negating the condition in the if-then-else branch:

factorial = proc "factorial" $ \ n -> body $
 ifte_ (iNot $ n >? 1)
 ...

This time the verification results in Termination: fail.

Proving Theorems via Haskell Using the ACL2 DSL

In addition to termination, we can prove arbitrary
properties of the factorial function. We do this by
extending the ACL2 expression list generated by the compiler.
For example, here is a theorem that proves factorial 4 == 25:

main = do
 ...
 test <- A.check $ factorialACL2 ++ [A.thm $ A.equal 24 $ A.cdr $ A.call "factorial" [A.nil, 4]]
 putStrLn $ "factorial 4 == 24: " ++ (if test then "pass" else "fail")

Rerunning the program should yield factorial 4 == 24: pass.

A Closer Look at the Compilation Process

Running the above example produces the following files,
which are the various intermediate representations (IRs)
of the Ivory to ACL2 compiler flow:

		CLL

The first step in the translation converts the
Ivory AST [https://github.com/GaloisInc/ivory/blob/master/ivory/src/Ivory/Language/Syntax/AST.hs]
to a smaller, simpler form called
CLL [https://github.com/tomahawkins/ivory-backend-acl2/blob/master/src/Ivory/Compile/ACL2/CLL.hs].
This smaller language provides top level function definitions
and Call, If, Return, Assert, Let, and Loop statements
along with a host of Expressions [https://github.com/tomahawkins/ivory-backend-acl2/blob/master/mira/src/Ivory/Compile/ACL2/Expr.hs].

		CPS

From CLL we then translate into a continuation passing style
(CPS [https://github.com/tomahawkins/ivory-backend-acl2/blob/master/src/Ivory/Compile/ACL2/CPS.hs])
form. In CPS expression evaluation order is made explicit
and all function calls become tail-calls.
This CPS IR provides the following continuation types: Halt, Call, Return, Let, If, and Assert.
In addition, this IR also provides for explicit stack operations (Push, Pop).

Ivory Language Coverage

The follow tables list Ivory features supported by the ACL2 backend.

Ivory Statements

Name | Description | Implemented | Testcase
—————|—————————————————–|————-|———-
IfTE | If-then-else. | X | factorialTests
Return | Return from a function call with an optional value. | X | factorialTests
Assert | User assertions. | X | intrinsicTest
Assume | User assumptions. | X | intrinsicTest
CompilerAssert | Compiler generated assertions. | X | loopTest
Local | Local variable introduction. | X | factorialTests
Call | Function calls. | X | factorialTests
Loop | A loop over a fixed iteration. | X | loopTest
Store | A store operation to a variable, array, or struct. | X | loopTest
AllocRef | Allocation reference. | X | loopTest
Defef | Pointer dereference. | X | loopTest
Assign | Variable assignment. | X |RefCopy | Copy a reference. | X |Forever | A forever loop. | |Break | A break statement for a loop. | |

Ivory Expressions

Name | Description | Implemented | Testcase
—————-|————————————————-|————-|———-
ExpSym | Symbols. | X | intrinsicTest
ExpVar | Variables. | X | intrinsicTest
ExpLiteral | Liternal constants. | X | intrinsicTest
ExpExpOp | Intrinsic (operator) application. | X | intrinsicTest
ExpIndex | Array indexing. | X | structArrayTest
ExpLabel | Structure label indexing. | X | structArrayTest
ExpSafeCast | Type casting. | X | arrayTest

Ivory Intrinsics

Name | Implemented | Testcase
——————|————-|———
ExpEq | X | intrinsicTest
ExpNeq | X | intrinsicTest
ExpCond | X | intrinsicTest
ExpGt | X | intrinsicTest
ExpLt | X | intrinsicTest
ExpNot | X | intrinsicTest
ExpAnd | X | intrinsicTest
ExpOr | X | intrinsicTest
ExpMul | X | factorialTests
ExpMod | X | intrinsicTest
ExpAdd | X | intrinsicTest
ExpSub | X | intrinsicTest
ExpNegate | X | intrinsicTest
ExpAbs | X | intrinsicTest
ExpSignum | X | intrinsicTest
ExpDiv | |
ExpRecip | |
ExpFExp | |
ExpFSqrt | |
ExpFLog | |
ExpFPow | |
ExpFLogBase | |
ExpFSin | |
ExpFTan | |
ExpFCos | |
ExpFAsin | |
ExpFAtan | |
ExpFAcos | |
ExpFSinh | |
ExpFTanh | |
ExpFCosh | |
ExpFAsinh | |
ExpFAtanh | |
ExpFAcosh | |
ExpIsNan | |
ExpIsInf | |
ExpRoundF | |
ExpCeilF | |
ExpFloorF | |
ExpToFloat | |
ExpFromFloat | |
ExpBitAnd | |
ExpBitOr | |
ExpBitXor | |
ExpBitComplement | |
ExpBitShiftL | |
ExpBitShiftR | |

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ivory-backend-c/TODO.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

TODOs

		Add reqs/provides to stabalize.

		Change back loop representations—put idx var inside for block.

		Try Jesse plugin?

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ivory-formal-model/README.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

A formal semantics for Ivory

This directory contains the Isabelle/HOL theory files for the
formal model of Ivory, along with proofs of type safety.

Contents

		Lib.thy: Lemmas which are not Ivory specific, and could/should be
in the standard library

		Heaps.thy: Definitions and lemmas for manipulating Ivory heaps and heap types

		Syntax.thy: The syntax of Ivory terms and types

		Semantics.thy: An abstract machine for the semantics of Ivory

		TypeSystem.thy: The model of the type system

		TypeSystemProps.thy: Properties of type system judgements

		EvalSafe.thy: Proofs about the safety of expression evaluation

		Progress.thy: The proof of the progress property

		Preservation.thy: The proof of the preservation property

		Soundness.thy: The top-level proofs of soundness

Installing

This proof was developed with Isabelle version 2013-2. The theory
file Soundness.thy contains the toplevel theorems.

Copyright and license

Copyright 2013-2014 Galois, Inc. [http://galois.com]

Licensed under the BSD 3-Clause License; you may not use this work except in
compliance with the License. A copy of the License is included in the LICENSE
file.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

 [image: Build Status] [https://travis-ci.org/GaloisInc/ivory]

Ivory [http://github.com/GaloisInc/ivory]

Ivory is an embedded domain specific language (EDSL) which aims to provide
a systems-level programming language that removes some common pitfalls of
programming in C, without sacrificing expressivity.

This repository includes a user guide [http://github.com/GaloisInc/ivory/blob/master/ivory/user-guide.md] and some
examples [http://github.com/GaloisInc/ivory/tree/master/ivory-examples/examples] Ivory programs. More information and tutorials are
available on ivorylang.org [http://ivorylang.org].

The following paper describes the Ivory language:

		Trevor Elliott, Lee Pike, Simon Winwood, Pat Hickey, James Bielman, Jamey
Sharp, Eric Seidel, John
Launchbury. Guilt-free Ivory [https://github.com/GaloisInc/ivory/blob/master/ivory-paper/ivory.pdf]. Haskell
Symposium, 2015.

Please cite this paper for when citing the language.

Contents

		ivory: the Ivory language implementation and interpreter

		ivory-backend-c: a backend for compiling Ivory programs to C

		ivory-examples: sample Ivory programs

		ivory-opts: an optimization framework and some optimization
implementations, for the Ivory AST.

		ivory-bitdata: a macro language library for specifying bit-precise
Ivory operations.

		ivory-hw: a macro language library for writing hardware drivers
in Ivory.

		ivory-model-check: a backend for verifying Ivory programs with CVC4

Installing

Ivory is written in Haskell and uses several recent GHC extensions. It is known
to work with with GHC 7.8.* and above.

We currently recommend using the Stack [http://www.haskellstack.org/] build tool for Ivory language
packages and any programs which use them.

Copyright and license

Copyright 2013-2015 Galois, Inc. [http://galois.com]

Licensed under the BSD 3-Clause License; you may not use this work except in
compliance with the License. A copy of the License is included in the LICENSE
file.

Contributing

This project adheres to the
Contributor Covenant code of conduct.
By participating, you are expected to uphold this code. Please report unaccpetable
behavior to smaccm@galois.com.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ivory-model-check/README.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

Ivory Model-Checker

This package provides a means of verifying Ivory programs using the CVC4 [http://cvc4.cs.nyu.edu/web/]
SMT-solver. We symbolically execute the Ivory program to produce a set of
verification conditions, which we then check for validity using CVC4. Thus we
can verify that Ivory procedures satisfy each others (and their own) contracts
(requires and ensures), as well as user- or compiler-inserted assertions to
guard against things like integer overflow.

Usage

We require a development version [http://cvc4.cs.nyu.edu/downloads/] of CVC4 at the moment, anything since
2014-10-15 should work.

The main entry-point for this package is Ivory.ModelCheck.modelCheck:

modelCheck :: Args -- ^ Options, e.g. verbosity, whether to inline function-calls, etc.
 -> [Module] -- ^ Modules we intend to call into
 -> Def p -- ^ The procedure we wish to verify
 -> IO Result

The most important option is likely inlineCall, which determines how to handle
inter-procedural analysis. The default is False, which means we will check the
requires clauses and assume the ensures clauses; if set to True, we will
symbolically execute the callee, which is more expensive but often more precise.

We also strongly recommend using this package with GHC 7.8.3, so you can enable
our compiler plugin that adds source locations to Ivory’s AST. The model-checker
will use the source locations to provide more precise error messages.

Limitations

The model-checker supports most Ivory statements and expressions, with the
following caveats:

		The model-checker will not accept any procedures that use forever loops or
break statements. Most Ivory loops are statically bounded, so we just unroll
them for the maximum number of iterations; but this tactic does not work for
infinite loops or loops that can return early.

		Floating-point arithmetic modeled extremely conservatively, i.e. we assume
nothing about floating-point operations. If your module makes assertions about
floating-point values, the model-checker will be unable to prove them.

		Non-linear integer arithmetic is supported, but imprecise. We abstract the
*, /, and % operators by assuming a few simple identities about them.

		The inlineCall flag is designed to be used with non-recursive procedures
only at the moment. The model-checker will probably enter an infinite loop if
it tries to inline a recursive procedure. This restriction can be removed if
there’s interest.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ivory-paper/overview.html

 Navigation

 		
 index

 		ivory-lang latest documentation »

Ivory Overview

Expressions

Integer Types

The integer types available to the Ivory programmer are, by design, the same
integers made available by stdint.h in C. Integers are available in 8, 16, 32,
and 64 bit widths, in both signed and unsigned variants - an unsigned 8 bit
integer has the Haskell type Uint8, a signed 16 bit integer has type Sint16,
and so on. Mathematical operations are available to the user through the Haskell
Num typeclass. Additionally, Ivory provides operators for bitwise logic and
shift operations with the semantics C programmers expect.

The major difference between integer expressions in C and integer
expressions in Ivory is that, like all conversions between Haskell values of
different types, conversions are explicit. For conversions where no loss of
information is possible, such as from a Uint8 to a Sint32, the safeCast
primitive is available. For conversions where information may be lost, such as
from a Uint32 to Uint16, the user can choose from a number of casts -

For conversions between signed and unsigned types of the same width, the
twosComplementCast primitive is available, which will convert Uint32 to
Sint32 bitwise, and signCast, which will convert between two numerical
values, with a default of the result type’s low or high bound when the result
type cannot represent a given numerical value.

Floating Point Types

The C types float and double are available to Ivory programmers via
the Haskell types IFloat and IDouble. These are also instances of the Num
typeclass and

Boolean Types

Ivory provides a boolean type called IBool, and two values true and false
in of that type. In order to implement Ivory correctly, it cannot reuse
Haskell’s existing Bool type.

As a consequence, Ivory must use a different name for any Haskell operations
over Ivory types that give a boolean result - for example, Ivory cannot
implement the Eq class for Sint8 ((==) :: Sint8 -> Sint8 -> Bool), but
instead an IvoryEq class with an operator (==?) :: Sint8 -> Sint8 -> IBool.
Other comparisons, e.g. those in IvoryOrd, are also given their ordinary
Haskell names postfixed with a ?.

Array types

TK TK they can have any stored thign inside them, and length is always specified
using a type nat in the type.

Array offsets are specified by the type Ix n. In general, the Ix n type may
be used for any arithmetic which has an upper bound less than n, whether in
the context of array bounds or elsewhere.

Statements

Statements can cause side effects, so they are embedded in Haskell Monad
of type Ivory eff a. The eff type parameter is used to track some side
effects.

Reference creation

The local statement creates a reference to a mutable value on the stack.
Local takes an argument of an initial value, and gives a Ref s area, where
type variable s is bound to the statement’s procedure scope (discussed later)
and area is of Ivory kind Area, which is used to specify the kinds of Ivory
types which correspond to memory areas - Stored atoms, such as Sint8,
as well as Arrays, Structs, and Refs.

Reference use

The deref and store primitives are Ivory statements that read and write to
a given Ref. deref is polymorphic and will work on ConstRef types as well

		a ConstRef can be created from any Ref using the constRef expression -
but, of course, it is not valid to store into a ConstRef.

Control Flow

Ivory does not Haskell syntax, such as the mixfix if/then/else or case
expressions for control flow, instead it uses a primitive ifte_ statement,
which takes an argument of type IBool followed two Ivory monad arguments.

Loops are available in Ivory using the arrayMap primitive, which has type
(Ix n -> Ivory eff ()) -> Ivory eff (). The function Ix n -> Ivory eff ()
specifies a loop body which is run for each valid value of Ix n, which is
0 to n-1. Loops may be terminated early with the break statement.

A nonterminating loop primitive, forever, is also provided by the Ivory
language. This primitive is only to be used for loops that should never
terminate, such as event loops in the implementation of an operating system
task.

Procedures

type signature

body creates new allocation scope

call

Structures

we use a quasiquoter to declare structures

what can be an element of a structure

the ~> operator allows you to use structure elements
in expressions, a ref to the structure becomes a ref to the
element given by the label argument

Bit Data

embedded systems use memory mapped IO, we use special helper functions declared
using the ffi to read and write to arbitrary addresses in memory

typically these addresses in memory contain bitfields. we specify the layout of
those bitfields using a special quasiquoter syntax to generate setter/getter
labels, so we can manipulate them in a type safe way

give an example

we can specify names for individual bit patterns as well

give an example

Modules

there is a moduledef monad, for syntax sake, that is jsut a writer for various
things you can write procs with incl, global memory areas with memArea,
dependencies with depend and
so on. the only thing to do with moduledef is create a package with it, which
gives the name of the .c/.h file that will be generated.

External C Code interface

you can import procs, memory areas
you can include headers in a given module

 © Copyright 2016.
 Created using Sphinx 1.3.5.

